
Efficient Weighted Graph Matching on GPUs
Michael Mandulak

Department of Computer Science
Rensselaer Polytechnic Institute

Troy, USA
mandum@rpi.edu

Sayan Ghosh
Pacific Northwest National Laboratory

Richland, USA
sayan.ghosh@pnnl.gov

S M Ferdous
Pacific Northwest National Laboratory

Richland, USA
sm.ferdous@pnnl.gov

Mahantesh Halappanvar
Pacific Northwest National Laboratory

Richland, USA
mahantesh.halappanavar@pnnl.gov

George Slota
Department of Computer Science

Rensselaer Polytechnic Institute
Troy, USA

slotag@rpi.edu

Abstract—Weighted matching identifies a maximal subset of
edges in a graph such that these edges do not share any vertices
in common with each other. As a prototypical graph problem,
matching has numerous applications in science and engineering,
such as linear algebra, multi-level graph algorithms, computer
vision and machine learning. There is a critical need for efficient
matching algorithms. However, there are challenges in developing
efficient, parallel graph matching methods on contemporary
GPGPU systems, due to common complexities in general graph
processing, such as irregular memory access patterns and load
imbalances. Furthermore, increasingly massive graph sizes and
resultant intermediate data commonly exceeds available GPU
memory. Although dense-GPU systems are mainstream and
offer accelerated on-node interconnection to enhance data access
bandwidth, data dependencies and device synchronization costs
in multi-GPU enabled massive-graph processing create challenges
to sustainable scalability.

Considering these challenges, we present efficient approxima-
tion algorithms for locally dominant matching, and we demon-
strate scalability via batching and distributing graph data across
multiple NVIDIA A100/V100 GPUs of NVIDIA DGX dense-
GPU platforms. Our locally dominant (pointer-based) matching
method exhibits 2-45× performance improvements compared to
state-of-the-art single-GPU and multithreaded CPU matching
implementations on a variety of real-world and synthetic graphs.
We show competitive quality comparisons and detailed analysis of
GPU-data distribution considerations for practical and efficient
weighted graph matching on GPUs.

Index Terms—Graph Analytics, Maximal Weighted Matching,
GPGPU, CUDA

I. INTRODUCTION

Given a graph G(V,E,w), where w : E → R>0 is a weight
function with a positive real number associated with each edge,
a weighted matching M ⊆ E is a set of edges such that no
two edges in M are incident on the same vertex, and the sum
of weights of matched edges,

∑
e∈M w(e), is the maximum

among all possible matchings in G. Matching is a fundamental
graph problem with numerous applications in diverse fields.
Also known as the linear assignment problem, matching has
applications in assigning or mapping one set of entities (e.g.,
residents) to another (e.g., hospitals) [31], numerical linear
algebra [11], [16], computer vision and pattern recognition [4],

and a variety of scheduling, resource allocation and facility
location problems [1], [8].

Optimal algorithms for matching exploit the approach of
augmentation, where paths that alternate between matched and
unmatched edges are iteratively found from current solutions.
By swapping the matched edges along these paths, more edges
can be matched [27]. However, such an iterative approach
limits the amount of work that can be done in parallel. In
contrast, approximation algorithms that do not require comput-
ing long augmenting paths are amenable to parallelization and
therefore perform significantly better on parallel systems [23].
An approximation algorithm is required to generate a solution
with a provable bound to the optimal one (detailed in §II).

With the steady rise in graph sizes and ubiquity of dense-
GPU nodes on modern HPC platforms, it has become crucial
to develop efficient computational methods and identify trade-
offs for graph processing on multiple GPUs. For graph work-
loads, sustainable (strong) scalability is impacted by severe
and unbalanced data movement bottlenecks, brought on due
to inherent irregularity in the real-world graph structure and
limited computation within many graph algorithms. Linear
algebraic methods continue to demonstrate the significant per-
formance advantages of GPUs over multicore CPUs. Although
graph algorithms can be algebraically expressed [26], and
past research proposed efficient linear algebra based parallel
algorithm for finding a perfect matching in a weighted bipartite
graph [3], implementing weighted matching on general graphs
using sparse linear algebra methods can be prohibitive in terms
of the computation costs (currently, no known methods exist).
By contrast, efficient approximation algorithms for weighted
matching are known [35].

The scalability issues of the graph workloads can be
alleviated, to a certain extent, by limiting the data move-
ment within a compute node. This is achieved through
leveraging faster GPU interconnects and vendor-optimized
collective operations. Nodes with several GPUs and rela-
tively large main memories are becoming mainstream, allow-
ing for processing massive graph workloads, which would
have previously required distributed-memory systems and

SC24, November 17-22, 2024, Atlanta, Georgia, USA
979-8-3503-5291-7/24/$31.00 ©2024 IEEE

the concerns associated with network communication and
load imbalance. Current support exists for up to 72 lat-
est NVIDIA™ Blackwell™ GPUs interconnected within a
rack using NVLink™ [19], which translates to an order-of-
magnitude increase in the GPU-GPU bandwidth relative to
contemporary RDMA/Infiniband interconnects.

However, memory requirements of graph workloads can still
easily surpass the available global memory within a GPU (tens
of GBs). Even with multiple GPUs, an arbitrary partitioning
of a graph can push the workload to its memory limit,
leading to out-of-memory and silent errors. In distributed-
memory, this problem can be sidestepped by using more
resources at startup or by considering fixed-size buffers—both
strategies increase communication overheads. In a single node
context, this mismatch of the available data and GPU global
memory is mitigated by considering a local partitioning of
the graph, where a “partition” roughly corresponds to the
maximum #edges that can be stored on each device. Further
enhancing the notion of this partitioning is the use of logical
“batches” associated with the per-device partitions, with syn-
chronization at the end of every processed batch. The intuition
behind batching is about selecting a working set (vertex
and corresponding edge ranges) and synchronization interval,
to mitigate load imbalances within partitions. Although the
device synchronization and batch transfer overheads can be
expensive for certain graphs, they can be offset by improved
data buffering, thread parallelism, memory access locality,
thread occupancy, faster data reductions, and ultimately, multi-
GPU parallelism [37], [38]. Even though graph processing
workloads are known for irregular data movement overheads
leading to implementation and scalability challenges [40], by
processing in batches, graph algorithm are able to regularize
the synchronization requirements and thus exploit vendor-
optimized GPU collective libraries such as NCCL™ [25] for
inter-GPU communication.

To the best of our knowledge, this work is the first-of-
its-kind multi-GPU implementation of weighted approximate
matching. Primary contributions are summarized.

• We extend the 1/2-approximate locally dominant match-
ing to multi-GPU setting.

• To accommodate large graph partitions on device and
control the working set size to enhance scalability, we
propose a flexible batch processing scheme in the con-
text of weighted matching on multi-GPU systems with
maintaining the approximation ratio.

• We demonstrate 2–45× performance improvement over
optimized OpenMP-based CPU graph matching imple-
mentation over multiple GPUs.

• We detail performance and quality analysis using several
billion-edge real-world and synthetic graphs on two GPU
platforms (comprising of NVIDIA™ A100 and V100
GPUs). For small graphs in which the optimal matching
could be performed, we show close to the optimal quality
(∼6% lower in weight on geometric mean).

We believe that this work will advance both the development

of new matching algorithms and matching-based applications
to accelerate a large number of domain problems.

II. BACKGROUND AND RELATED WORK

A. Preliminaries

a) Notations: Let G(V,E,w) be a simple undirected
graph, where V and E are the set of vertices and edges,
respectively, and w : E → R>0 is a positive weight function
defined on the edges. We define n = |V | and m = |E|. A
subset F ⊆ V induces a subgraph of G with F as vertex set
and edge set {{u, v} ∈ E : u ∈ F and v ∈ F}. Similarly, a
subset F ⊆ E induces a subgraph where the vertices are the
endpoints of F along with edgeset F . For a vertex v, N (v)
may represent the edges incident on v ({e ∈ E : v ∩ e /∈ ∅})
or vertices adjacent to v ({u ∈ V : {u, v} ∈ E}), and which
definition is used will be clear from the context. Similarly,
N (e) is also defined. For two integers x, y, where x ≤ y,
[x, y] represents the consecutive integers from x to y including
themselves. We denote f(X) =

∑
e∈X f(e), where f is a

function defined on the set X .
b) Maximum Weight Matching (MWM) Problem: Given a

graph G(V,E,w), a matching is a subset of edges, M ⊆ E,
where every vertex of G has at most one endpoint in M .
A maximum weight matching (MWM) is a matching M∗ of
maximum w(M∗) among all matching. A matching M is
maximal if it can not be extended without violating the
matching constraint. For an α ∈ (0, 1], M is an α-approximate
MWM if w(M) ≥ α w(M∗).

B. Locally dominant algorithm

Definition II.1 (Locally dominant matching). Given a match-
ing M , an edge e ∈ E \M is available if it does not share
any endpoints with any other edge of M , i.e., M ∩ e = ∅.
e is locally dominant w.r.t M if w(e) is greater or equal to
all available adjacent edges of e. A matching M is locally
dominant if every edge of M is locally dominant when it is
added to M . In Fig. 1 assuming M = ∅, the edges {1,0} and
{3,4} are locally dominating while {2,3} and {5,4} are not.

We restate the approximation result of a locally dominant
algorithm by Preis [36].

Lemma II.1 ([36]). Any algorithm that produces a maximal
locally dominant matching is 1

2 -approximate for maximum
weight matching.

The locally dominant algorithm provides us with a frame-
work to design highly concurrent algorithms for matching,
since it avoids global sorting as needed for the traditional
greedy algorithm. The LocalMax [6] and Suitor [30] algo-
rithms described in the literature are two examples of locally
dominant frameworks. We next discuss a pointer-based locally
dominant algorithm in Algorithm 1, which will provide a base
for our multi-GPU algorithms described in the subsequent
section. Each iteration of Algorithm 1 consists of two phases:
a pointing and a matching phase. In a pointing phase for each
vertex, v of G, we identify and point to a neighboring vertex

2

Fig. 1. One iteration of the LD-SEQ algorithm when M = ∅: pointing: for
each vertex, choose the heaviest neighbor, and, matching: if two vertices point
to each other, add the edge to M ; remove all edges incident on M , repeat.

(mate) with the highest weight. In the next phase, Line 6
checks for an edge if the two endpoints mutually point to each
other. If this is the case, then e is added to matching, and all
the adjacent edges of e (including e) are removed from G.
This continues until the graph becomes empty. We show an
iteration with the two phases of LD-SEQ algorithm in Fig. 1.

Algorithm 1 LD-SEQ matching
Input: Graph: G(V,E,w)
Output: A locally dominant matching in mate array

1: M ← ∅
2: while G is not empty do
3: for all v ∈ V do ▷ Phase 1: Pointing
4: mate(v) = argmaxu∈N (v) w({u, v})
5: for all e(u, v) ∈ E do ▷ Phase 2: Matching
6: if mate(v) = u and mate(u) = v ▷ LD edge
7: M = M ∪ e
8: G = G \ {e ∪N (e)}

Lemma II.2. The matching M generated by Algorithm 1 is
maximal and locally dominant.

Proof. We start with M = ∅, which is locally dominant
trivially. Let M be the current matching. An edge e is inserted
into M iff the condition in line 6 is true, which means u and
v mutually point to each other. So, e is a locally dominant
edge w.r.t. M . Since each edge, when inserted to M , is
locally dominant according to Definition II.1, M is also locally
dominant. We continue until G is empty, which renders a
maximal matching.

The following corollary immediately follows from
Lemma II.2 and Lemma II.1.

Corollary II.1. The matching M generated by Algorithm 1
is 1

2 -approximate.

C. Related Work

Although MWM is solvable in polynomial time [17], [18],
the high computational complexity and sequential nature of
the optimal algorithm is prohibitively expensive for even
moderate-sized graphs. As a result, in the last few decades,
there have been several efficient approximation algorithms
designed with different guarantees [2], [14], [15], [34], [36].
The breakthrough result for designing practical parallel al-
gorithms is the locally dominant algorithm by Preis [36].
The locally dominant algorithmic framework is used in a
number of shared and distributed memory algorithms for
approximate matching. These include the pointer-based (aka
LocalMax) algorithms [6], [29] and stable matching-based
suitor algorithms (henceforth, SR-OMP) [30]. We refer to [35]
for a detailed description of many of these algorithms.

Fagginger et al. [20] adapt the bipartite auction algorithm
to implement a non-bipartite greedy matching by randomly
coloring the eligible vertices blue or red, and they show that
this algorithm can be implemented to GPU. However, the
quality of the matching from this algorithm is shown to be
subpar to subsequent work [6], [33]. Birn et al. [6] uses the
pointer-based approach, while Naim et al. [33] employ the
stable matching-based suitor algorithm (henceforth, SR-GPU).
SR-OMP and SR-GPU are the state-of-the-art practical parallel
approximate matching algorithms for shared memory parallel
and single GPU methods. None of the existing GPU algorithms
can be executed on multi-GPU systems, which is the primary
contribution of this paper.

To motivate our work, we consider recent works towards
the culmination of multi-GPU methods across linear solvers
and the applications of maximum weighted matching therein,
requiring a scalable approximate matching in practice [5], [41]
Recent works pertaining to scalable graph-related computa-
tions on multiple GPUs have been shown to utilize randomized
or naturally ordered partitions across multiple devices [9], [24],
[39]. For our purposes, we draw from methods that employ
batching and sampling strategies [10], [22], [42] to balance
edge counts across devices while considering scalability rela-
tive to the number of devices allocated for computation.

III. GPU IMPLEMENTATION

We now discuss the development of our locally dominant
pointer-based method implementation on GPUs, referred to
as LD-GPU in the rest of the paper. Considering a single node
and multiple GPU configuration, we detail optimizations made
through batching, graph structure implementation, and kernel
design to improve the performance across a wide range of
input graphs. For the following, we assume that we have N
GPUs indexed through 1 to N .

A. Graph distribution

We utilize the Compressed Sparse Row (CSR) format to
store the nonzero elements in the graph, using separate vertex,
edge, and value (edge weights) arrays, where edge information
is stored as 64-bit integers. We distribute the graph G across
N GPUs, where the i’th GPU has the subgraph Gi(Vi, Ei) as

3

input. To achieve that, we first form a partition of the vertex
set, V = {Vi ⊆ V : i ∈ [1, N]}, where Vi ∩ Vj = ∅ for
i ̸= j, and

⋃
i∈[1,N] Vi = V . For each Vi, we compute Ei by

choosing the subset of edges that have at least one endpoint in
Vi. Formally, Ei = {{u, v} ∈ E : u ∈ Vi}. Note that the edge
set E does not form a disjoint partition across the devices,
since an edge can reside in multiple devices.

We partition the vertices with an attempt to assign similar
#edges across the partitions (#vertices can be dissimilar) for
improved load balance across devices, ensuring contiguous
vertex IDs among partitions for coalesced global memory
accesses on device. Each device is managed by an individual
OpenMP thread that acts as its device index.

B. Batching

Fig. 2. Scenarios concerning batches and partitions (on a single device) and
depicting asynchronous batch processing through CUDA streams.

For many of the massive graphs in our benchmark, even
the subgraph representations (i.e., Gis) do not fit into GPU
memory. To tackle the memory limitations on devices and
the irregularity of graph structured data, we adopt a batching
scheme in our implementation. This batching scheme logically
groups vertices assigned to a device for processing one group
at a time. Given a device i, we further create a set of subgraphs
(called batches) of Gi by partitioning the vertex set Vi. We
assume the ith device has Ni batches, and represent them
as a set of integers, {1, . . . , Ni}. The b’th batched subgraph
is denoted by Gb

i (V
b
i , E

b
i), where b ∈ [1, Ni]. Similar to the

graph distribution, in the batched subgraph, the edge set Eb
i for

the ith device contains all the adjacent available edges to the
vertices (V b

i) assigned to batch b. We use contiguous ranges
of vertices to form a batch, following the device partition
in the initial distribution of the graph data, as shown in
Fig. 2. The purpose of batching is twofold: (i) considering
single-node multi-GPU platforms, large graphs (as long as
there is sufficient memory on node) can be accommodated
on a variable number of devices (implicit or default scenario),
and (ii) allowing logical control of task distribution on device

Algorithm 2 LD-GPU matching
Input: Graph: G(V,E), pointers[0 : |V |]
Output: Matching in mate[0 : |V |] array

1: for each GPU in parallel do
2: while there exist available matching edges do
3: for each batch b per GPU do ▷ Pointing
4: strm ← b mod 2
5: LOADBATCH<strm>(Gid , b)
6: SETPOINTERS<strm>(Gb

id ,pointers,mate)
7: nccl_AllReduce(pointers)
8: SETMATES(pointers,mate) ▷ Matching
9: nccl_AllReduce(mate)

10: procedure LOADBATCH<stream>(Gi(Vi, Ei), b)
11: v batch ← V b

i

12: cudaMemcpyAsyncHtoD(v batch, strm)

for better balance on workload spreads (explicit working set
control via batches less or greater than a partition).

The batch formation follows an edge-based scheme, imple-
mented as a binary search on the prefix sums within our CSR
representation. Coalesced allocations are maintained in batches
given the contiguous nature of our initial partitioning. In the
formation of batches, there can be multiple scenarios; two of
them are outlined in Fig. 2. In both the cases, we maintain the
initial device partition and consider batches of varying sizes
relative to the original partition. We attempt to minimize the
number of batches to reduce initial overheads associated with
data transfer between the host and device. We also adopt a
double buffering scheme for batch processing, and we use
two GPU streams per device to asynchronously load data
and compute. Ideally, #batches can be optimized relative to
scalability or to exploit underlying program logic. We discuss
the scalability aspect of multiple batches in Section IV.

C. Intermediate data sharing

Multi-GPU implementations can consider a peer-to-peer
approach for sharing intermediate data between devices, sup-
ported by unified virtual addressing in contemporary GPUs.
There are peer-access APIs to bypass host for inter-device
transfers; on-demand paging is another option. These options
are convenient for regular data sharing scenarios, irrespective
of applications, when the data must be shared after certain
synchronization points, usually following independent compu-
tation. However, in our case, devices work on different batch
ranges concurrently (#batches are the same per device), and
there can be a situation during matching (see Algorithm 1),
where there is a dependency on a previous or next batch.
Hence, we had to adopt a conventional bulk-synchronous
approach in batching, without which we would have to contend
with numerous conflicting scenarios of device memory loads,
especially as batch counts increase.

Primary conflicts revolve around instances where required
edge information is not present on concurrently-loaded batches
in the devices. Such scenarios require either the host to retrieve
this information or to impose restrictions on batches based
on inter-dependencies, which can substantially increase with

4

the rising #batches. Thus, we adopt a vertex-based approach
to impose independence in the setting of vertex pointers, no
matter the batch distribution. This further allows us to tweak
batch counts without restriction for optimal data distribution
given the irregularities within edge information. One trade-off
for this method, however, is the requirement to store global
matching information on each device. For our purposes, this
requires two arrays of size |V | to be allocated on each device.
Given the usage of batching and the relative memory complex-
ity of vertices to edges being trivial, we accept this trade-off
for ease of implementation and device communication.

D. GPU Implementation

We now discuss the details of our GPU implementation,
LD-GPU. We provide a general overview of the algorithm
in Fig. 3, which depicts the pointing and matching phases,
as introduced in Algorithm 1. We first provide a high-level
description in Algorithm 2 followed by specific kernels in
Algorithm 3.

Algorithm 3 Matching Kernels
1: procedure SETPOINTERS<stream>(Gb(V b, Eb),

pointers,mate) ▷ Batched Graph Data Gb

2: buffer ← V b[stream]
3: for u ∈ buffer in warp do
4: p ← ∅
5: if mate[u] = ∅
6: for v ∈ N (u) and mate[v] = ∅ per thread do
7: p ← argmaxx∈{v,p}{w({u, x})}
8: shuffle_reduce(p) ▷ Across Warp
9: pointers[u]← p

10: procedure SETMATES(pointers,mate)
11: for vertex u per thread do
12: if pointers[pointers[u]] = u ▷ Mutual Check
13: mate[u]← pointers[u]

Algorithms: After graph loading and distribution, our
algorithm proceeds as follows: each GPU’s host thread iter-
ates through its batches, sequentially loading and processing
batch data for the initial pointing phase. We utilize a dual-
buffer method to overlap communication and computation of
successive batches over CUDA streams (shown in Fig. 2).
Specifically, we allocate two buffers per device, such that
the loading and processing of batches can occur concurrently
using asynchronous CUDA streams (denoted by stream in
lines 4-6). Thus, we only have to synchronize between suc-
cessive batch invocations when the #batches are greater than
two. When there are one or two batches, there is no extra
synchronization between the respective batch invocations due
to the separate buffers. In the cases of a higher number of
batches, we sequentially perform these load and processing
steps, interleaving batches between the buffers and performing
host-device synchronization after determining the heaviest
available edge information for the vertices in each batch
(lines 5-6). Recall from Definition II.1, an available edge is an
edge that can be added to the current matching without violat-

ing the matching constraint. This pointing phase identifies and
sets pointers along these highest weighted neighbor edges for
each vertex, independently. Then, we invoke a reduction of the
pointer information across the GPUs using NCCL reduction
routines [25], ensuring that all devices contribute and obtain
the global pointer information and synchronize, before moving
on to the next phase (line 7).

For the matching phase, we maintain global matching in-
formation on device and perform mutual checks independently
using the pointer information obtained from the pointing phase
(line 8). Any mutually-pointing vertices are committed to the
matching. We do not require batching in this phase, since
we only reference the aggregated pointer information for
mutual checks. We perform another NCCL allreduce to
synchronize the matching information across devices (line 9).
Given the global matching information for an iteration, a
device can then decide to terminate if no new edges were
added to the matching. This process repeats until no more
available matching edges exist.

Kernels: For the pointing phase, we distribute contiguous
groups of vertices within the current batch across warps (a
warp is 32 threads). These groups are assigned a stream in
our dual buffer allocation based on the batch number (line 2).
Each warp then sequentially processes its assigned vertices,
with the threads concurrently iterating over the neighborhood/
adjacencies of the current vertex. Each thread performs a
reduction on its subset of the neighborhood to determine the
heaviest available edge (lines 5-7), which is further reduced
using a bandwidth-efficient warp-level shuffle reduction utiliz-
ing registers, communicating the heaviest active neighboring
edge across the warp (line 8). This edge is stored in an array at
the global device memory (pointers in Algorithm 3), and
the process continues for each vertex assigned to the warp.

In the matching phase, we check the list of vertices, without
scanning the individual neighborhoods. We can perform the
mutual pointer check (line 12) after distributing the vertices
evenly among the threads to limit load imbalance, assigning
contiguous groups of vertices to each thread, and performing
a global memory check and a subsequent write if a mutual
pointer exists (locally dominant edge). Although the global
memory check can lead to suboptimal performance due to non-
coalesced memory accesses arising from indirect indexing, in
practice we found the pointing phase to be more expensive, as
discussed in §IV. We further invoke a device-wide reduction
on the global matching information, to ensure consistency of
the mutual checks across the iterations of the matching phase.

Next, we show that our LD-GPU algorithm provides the 1
2

approximation guarantee as the LD-SEQ algorithm.

Lemma III.1. The matching produces by LD-GPU is 1
2 -

approximate for MWM.

Proof. It is sufficient to show that the edges committed to
matching (Line 12 in Algorithm 3) in LD-GPU are locally
dominant w.r.t. the current matching and the final matching
is maximal. The proof then follows from Lemma II.1. We
note that the only difference between the sequential LD-SEQ

5

Fig. 3. LD-GPU algorithm illustration considering partitions and batches using multiple GPUs. A graph is first partitioned among devices and logically
arranged into ranges of vertices (and adjacent edges) called batches. Each batch is processed independently through the pointing phase, followed by a global
reduction, the matching phase and another global reduction to synchronize device matching information.

algorithm (Algorithm 1) and LD-GPU (Algorithm 2) is that, in
LD-GPU the graphs are distributed across the devices by using
a non-overlapping vertex partition scheme. However, since we
include all the adjacent edges of the set of vertices assigned to
the device, the edge distribution may overlap. In a device for
a vertex u pointing to v in the pointing phase there are two
cases : (i) v is in the induced subgraph (the edges inside the
yellow dashed box in Figure 3), and (ii) v is in the cross/cut
edges (the red edges in Figure 3). For the first case, we can
immediately decide whether v also points to u; for the second
case, since v does not reside in the particular GPU, we do not
know who v decides to point. However, after the pointing
phase, we are synchronizing the pointers array across all
devices (Line 7 in Algorithm 2). Since the vertices form a non-
overlapping partition, this reduction is unambiguous. After the
reduction, if u and v point to each other, {u, v} must be a
locally dominant edge, which we are checking in SETMATES
kernel. Furthermore, after the matching phase, we are also
synchronizing the mate array globally to reflect the current
matching across all devices. The algorithm continues until
we have any more edges to match, which renders a maximal
matching.

IV. EVALUATIONS

In this section, we present detailed quality and performance
assessments of LD-GPU on two NVIDIA GPU platforms,
comparing the performance/quality with state-of-the-art CPU/
GPU implementations. We have excluded graph related I/O,
allocations (host/device), CSR construction and host-device
partition transfer times from the reported execution times in
this paper, and only include the time (in seconds) for the point-
ing and matching phases on GPUs. We report the best times
over ten runs. We acknowledge that for large graphs, graph
I/O/preparation times can be significant relative to the overall
times spent in the phases, but this is unavoidable, regardless of
the matching algorithm. Details on the experimental platforms
and input datasets are below. Our implementation is publicly
available as part of the ExaGraph project repository.1

1https://github.com/ECP-ExaGraph/sumac

Datasets: We perform evaluations using fourteen graphs
with varying sizes (from 28M to 5.8B edges) and struc-
tural properties. Most of these graphs are collected from the
SuiteSparse Matrix Collection [12], except uk-2007-05 and
webbase-2001, which are web-crawl graphs from the LAW
collection [7]. In cases where natural edge weights were absent
from the datasets (weights not present or assigned 1), we
sample weights from a uniform distribution range of three
decimal points from [0, 1]. Our datasets are listed in Table I,
organized into groups: (i) LARGE: graphs with #edges > 1B,
and (ii) SMALL: graphs with #edges ≤ 1B.

Platforms: We use two GPU platforms in our evaluations:
NVIDIA™ DGX systems with 8/16 GPUs (DGX-A100 and
DGX-2). The NVIDIA™ DGX-2 V100 platform consists
of a single node with 16 “Volta” V100 GPUs (with 80
symmetric multiprocessors a.k.a SMs) with 32GB HBM2
memory/GPU and two-way 24-core Intel Xeon P-8168 CPUs
(“SkyLake” or SKL) at 2.7GHz, 33MB L3 cache, 6 memory
channels, and 1.5TB DDR4 memory. DGX A100 is the third
generation server node from NVIDIA™, and consists of 8
“Ampere” A100 GPUs (with 108 SMs) with 40GB HBM2
memory/GPU and two-way 64-core AMD EPYC 7742 CPUs
at 2.25GHz, 256MB L3 cache, 8 memory channels, and
1TB DDR4 memory. NVIDIA GPUs either come in the
PCIe or proprietary NVLink/NVSwitch based form factors.
Proprietary SXM module allows NVIDIA GPUs to directly
communicate through NVLink interconnect (DGX-A100 uses
SXM4 whereas DGX-2 V100 interconnect uses SXM3). We
use CUDA version 10.1.243, OpenMP version 11.2.0 and
NCCL version 2.8.3.1 on both platforms. Our comparative
CPU runs utilize a server with similar specifications as the
A100 system, having two-way 64-core (256 threads) AMD
EPYC 7742 CPUs at 2.25GHz, 256MB L3 cache, 8 memory
channels, and 2TB DDR4 memory.

The rest of this section is organized as follows. We begin
the discussion by comparing the quality of the matching
produced by LD-GPU, relative to optimized CPU/GPU im-
plementations, in §IV-A. Then, we analyze the execution
time performance and scalability of LD-GPU against various
inputs and systems in §IV-B. In §IV-C, we dissect the GPU
utilization of LD-GPU considering variations in graph structure

6

https://github.com/ECP-ExaGraph/sumac

TABLE I
(LEFT) GRAPH DATASETS AND PROPERTIES, WHERE |V | AND |E| ARE THE GRAPH VERTEX AND EDGE CARDINALITIES, dmax AND davg ARE THE GRAPH
MAXIMUM AND AVERAGE DEGREES, AND B, M, AND K REFER TO ×109 , ×106 , AND ×103 , RESPECTIVELY. (RIGHT) BEST EXECUTION TIMES (S) OVER

TEN RUNS PER ALGORITHM. LD-GPU DEMONSTRATES BETTER PERFORMANCE RELATIVE TO EXISTING CPU/GPU IMPLEMENTATIONS
(SR-OMP/SR-GPU) FOR 9/14 GRAPHS, DEPICTING 2–45× SPEEDUP FOR BILLION-EDGE GRAPHS RELATIVE TO SR-OMP. ’-’ REFERS TO TESTS THAT

FAILED DUE TO OUT-OF-MEMORY ERRORS.

Properties Best Execution Time (s) LD-GPU Vs.

Graphs |V | |E| dmax davg SR-OMP SR-GPU LD-GPU (#GPUs) LEMON SR-OMP SR-GPU

AGATHA-2015 184 M 5.8 B 12.6 M 63 36.07 - 16.04(8) - 2.2× -
uk-2007-05 105 M 3.3 B 975 K 62 N/A - 2.44(8) - - -
webbase-2001 30 M 3.3 B 2.1 M 220 N/A - 49.29(8) - - -
MOLIERE 2016 134 M 2.1 B 68 32 46.08 - 11.16(8) - 4.1× -
GAP-urand 134 M 2.1 B 1.5 M 31 17.66 - 0.319(8) - 45.4× -
GAP-kron 118 M 1.9 B 816 K 17 9.53 - 0.389(4) - 24.4× -
com-Friendster 65 M 1.8 B 5 K 55 8.40 0.661 0.693(6) - 12.1× 0.95×

Queen 4147 4 M 317 M 81 79 0.332 0.008 0.018(4) 323.5 18.4× 0.44×
mycielskian18 196 K 301 M 98 K 1530 0.113 0.025 0.019(1) 488.6 5.9× 1.32×
HV15R 2 M 283 M 484 140 0.240 0.047 0.032(4) 217.5 7.5× 1.47×
com-Orkut 3 M 234 M 33 K 76 4.351 0.036 1.215(4) 221.8 3.6× 0.03×
kmer U1a 68 M 139 M 70 4 0.798 0.048 0.152(4) 323.5 5.2× 0.32×
kmer V2a 55 M 117 M 30 2 0.636 0.058 0.131(1) 271.8 3.6× 0.44×
mouse gene 45 K 28 M 8 K 642 0.041 0.016 0.013(1) 488.6 3.1× 1.23×

and resulting distributions. Finally, in §IV-D, we compare the
overall performances of LD-GPU with state-of-the-art OpenMP-
based CPU (SR-OMP), single GPU (SR-GPU) and NVIDIA™
RAPIDS™ cuGraph implementations respectively, and intro-
duce a unique Figure-of-Merit (FoM) for assessing the quality
and performance of the results.

A. Matching Quality

We compare the quality of our LD-GPU and the multi-
threaded SR-OMP with the sequential optimal MWM algorithm
included in the Library of Efficient Models and Optimization
in Networks (LEMON) [13]. We exclude SR-GPU as we observe
the SR-GPU weights are very close to the SR-OMP ones. We are
able to only execute LEMON on the SMALL instances since the
LARGE graphs resulted out of memory conflicts. In Table II,
we show the percentage difference of weights of LD-GPU and
SR-OMP algorithms relative to the LEMON. Here, the lower is
the better. Across our SMALL inputs, we observe high quality
matching output by LD-GPU, with only 6% difference from the
optimal, on geometric mean. LD-GPU and SR-OMP achieve a
similar quality, which we attribute to both algorithm’s greedy
approach in approximate maximum weighted matching. These
results suggest that although our LD-GPU algorithm is 1

2 -
approximate in the worst case, in practice, we achieve close
to optimal quality.

B. Baseline Performance

Scalability: Fig. 4 presents strong scaling results on 1–8
A100 GPUs using the large inputs; we picked the best results
for every configuration by considering a range of batches (less
than 15) on up to 4 devices. Beyond 4 devices, each partition
fits into a device, and we can avoid the batch processing
related overheads. We observe up to 47× speedup on 8 GPUs
relative to a single GPU. This superlinear speedup is due
to the sequential nature of batch processing in the pointing
phase and the associated synchronization and data transfer

TABLE II
LD-GPU AND SR-OMP QUALITY PERCENTAGE DIFFERENCE RELATIVE

TO LEMON ON THE SMALL GRAPH INSTANCES.

Percentage Diff. from LEMON

Graphs LD-GPU SR-OMP

Queen 4147 4.8 4.7
mycielskian18 12.5 12.6
HV15R 2.8 2.8
com-Orkut 2.6 2.6
kmer U1a 8.9 9.0
kmer V2a 9.9 9.9
mouse gene 11.2 11.3

Geo. Mean 6.38 6.38

overheads for the low device counts, which can be optimized
away by increasing the number of device partitions. When the

1 2 3 4 5 6 7 8
#GPUs

10
0

10
1

10
2

10
3

R
un

tim
e

(s
)

10 10
6 6

2

10
8 6

2 2

8
8

6 6 2

8
6

1
1 1

4
4

1 1 1

3

1
1 1 1

3 2 2 1 1

Runtime Scalability for LD-GPU

AGATHA_2015
uk-2007-05

webbase-2001
MOLIERE-2016

GAP-urand
GAP-kron

com-Friendster

Fig. 4. Strong scaling for LD-GPU on 1–8 GPUs, using a variety of batch
counts and choosing the best execution time over 10 runs.

batch processing overheads are absent, the scalability plateaus
beyond 4 GPUs for most of the large inputs as the scalability

7

from the matching/pointing phases are offset by the rising
costs of collective operations and synchronizations at higher
device counts. Details about the relative costs of the high-level
components in LD-GPU are discussed next.

To study the scalability potential of batches, we subject
relatively small inputs (to ensure a single partition per device)
with higher batches on multiple devices (deliberately intro-
ducing nontrivial batch processing overheads). We present the
results on the kmer U1a, mycielskian18 and kmer V2a graphs
in Fig. 6. For these instances, the default scenario (single
batch/partition) does not exhibit any scalability with increasing
the #devices, as the collective reduction/synchronization over-
heads offset improvements in the matching phase, as shown in
the component-wise timing in Fig. 7. Increasing the #batches,
we observe a more balanced distribution of the independent
work (pertaining to the pointing phase) and overall data
movement/synchronization, despite batch transfer overheads
(observe enhanced scalability for 3, 5 and 10 batches in Fig. 7
and Fig. 6). We anticipate subsequent batch transfer overheads
would ultimately impact the scalability beyond a certain point.

Component-wise timing analysis: In Fig. 5, we examine
the individual execution times of the high-level components in
Algorithm 2 for different batches on 1–8 GPUs, considering
LARGE and SMALL graphs. We track the individual contribu-
tions of the pointing and matching phases, allReduce oper-
ation for collecting the global pointers and mate information,
batch range related data transfers to device and explicit syn-
chronizations. For the com-Friendster and GAP-kron graphs,
we use batches for up to 4 GPUs to accommodate multiple
partitions on a device; otherwise, we proceed with the default
single batch version (even a single batch uses dual buffers,
as explained in §III-B). Fig. 5 conveys that synchronization
and communication costs dominate about 90% of the overall
execution time, excluding single GPU runs. In the single
GPU and non-default batching scenarios, the pointing phase
take about 50% of the overall execution time, as sequential
batch processing increases the (local/independent) computa-
tion overheads as well. This is similar to our observations

com-orkut kmer_U1a kmer_V2a Queen_4147
0%

50%

100%

#GPUs

mycielskian18 mouse_gene com-Friendster GAP-kron
0%

50%

100%

Pointing
Matching

Reduce Pointers
Reduce Mate

Batch Transfer
Synchronization

12345678 12345678 12345678 12345678

Fig. 5. Component-wise timing (in terms of %-overall in Y-axis) for SMALL/
LARGE graphs (X-axis) for variable #batches/GPU on 1–8 GPUs.

2 4 6 8
#GPUs

0

2

4

kmer_U1a

2 4 6 8
#GPUs

0

2

4

6

mycielskian18

2 4 6 8
#GPUs

1

2

3

kmer_V2a

Ru
nt

im
e

(s
)

1 batch 3 batches 5 batches 10 batches

Fig. 6. LD-GPU using 1 (default), 3, 5 and 10 batches on 1–8 GPUs.

1 Batch 3 Batches 5 Batches 10 Batches
0%

50%

100%
12345678 12345678 12345678 12345678

#GPUs

Pointing
Matching

Reduce Pointers
Reduce Mate

Batch Transfer
Synchronization

Fig. 7. Component-wise timing (%-overall in Y-axis) for kmer U1a graph
using LD-GPU with 1 (default), 3, 5 and 10 batches (X-axis) on 1–8 GPUs.

on a handful of SMALL graphs where we demonstrated that
considering reasonable #batches can increase the scalability
relative to the default scenario (see §IV-B). Thus, we see
a direct relation in vertex-batch distribution with scalability
across the devices, for LD-GPU. Also, due to greater than
50% of the overall time spent in collective communication
and synchronization, LD-GPU depends on the efficiency of the
underlying communication runtime and GPU interconnection
network. Impact on the performance due to GPU platform
interconnect is discussed next.

NVIDIA Ampere (A100) vs. Volta (V100) platforms: To
further evaluate the impact of the GPU platform, comparing
between generations of device and GPU interconnects, we
analyze the performance of LD-GPU considering— (i) devices/
interconnects: NVIDIA Ampere (A100) vs. Volta (V100)
GPUs, and, (ii) standardized vs. proprietary interconnect: PCIe
vs. NVLink (SXM4) on DGX-A100. Table III highlights the
performance impact of the GPU generation by comparing con-
temporary NVIDIA™ “Ampere” A100™ vs. previous “Volta”
V100™, reporting the speedup of LD-GPU on A100™ using
SMALL graphs relative to V100™. We use a single device to
capture the performance independent of device communication
and batch processing. We observe about 2-4× improvements
on contemporary A100 vs. previous-generation V100 GPU.

TABLE III
LD-GPU SPEEDUP ON A SINGLE NVIDIA A100 VS. V100.

Graphs A100 Speedup

Queen 4147 1.07×
mycielskian18 2.05×
com-Orkut 2.47×
kmer U1a 4.56×
kmer V2a 4.53×
mouse gene 1.49×

Geo. Mean 2.35×

8

kmer_U1a GAP-kron com-Friendster kmer_V2a mycielskian18
Iteration (Start to End)

0%

40%

80%
Av

er
ag

e
of

 To
ta

l E
dg

es
 Tr

av
er

se
d 5

23 5

12

3

2

5

16

1 1

1

3 2 1

Info

Fig. 8. Mean and standard deviation of % of edges accessed by warps on pointing phase iteration of LD-GPU—for 90% of the iterations, less than 20% of
the edges are accessed.

We assess the impact of the GPU interconnect, PCIe vs.
NVLink (SXM4), in Fig. 9. Foley, et al. [21] report 5× the
bandwidth of PCIe using proprietary NVLink (on previous-
generation NVIDIA™ P100™ GPU). We consider SMALL
and LARGE inputs, with GAP-kron and com-Friendster using
batching for GPU counts less than 4. Given the reliance of
LD-GPU on fixed synchronization points around global device-
based collective operations, we observe average performance
improvements of 3× with NVLink over PCIe interconnect
(maximum performance improvement was about 17×). We

1 2 4 8
#GPUs

0x

1x

2x

4x

8x

16x

P
er

fo
rm

an
ce

 Im
pr

ov
em

en
t

NVLink vs. PCIe Improvement

mycielskian18
mouse_gene

com-Friendster
GAP-kron

com-Orkut
kmer_U1a

kmer_V2a
Queen_4147

Fig. 9. Execution time speedup of NVLink vs PCIe for data transfer and
multi-GPU communication for LD-GPU.

observe the outlier input mouse gene (smallest graph), which
actually demonstrates relatively mild and stable collective
communication overhead up to 4 GPUs (see Fig. 5). Hence,
we expect non-trivial end-to-end improvements with enhanced
GPU interconnects across the vendor generations for larger
graphs. Fig. 10 compares LD-GPU scalability on NVIDIA™
DGX-A100 (8 A100 GPUs with NVLink SXM4) with previ-
ous generation DGX-2 (16 V100 GPUs with NVLink SXM3)
for two diverse LARGE inputs over the same #batches. While

GAP-kron exhibits a maximum of up to 8× improvement on
8 A100 GPUs as compared to 16 V100 GPUs, com-Friendster
demonstrates a maximum improvement of about 10× for the
same range. We observe a significant increase in the execution
times on V100 GPUs with rising matching iterations, for e.g.,
GAP-kron exhibits 15 iterations for LD-GPU, whereas com-
Friendster runs for around 2,000 iterations.

1 2 4 8 16
#GPUs

10
0

10
1

10
2

R
un

tim
e

(s
)

6

2 2 2 1 1 1 1 1 1 1 1 1 1 1 1

4

2
2 1 1 1 1 1

3 3 3

1 1 1 1 1 1 1
1 1 1 1

1 1

3 2 2
1 1 1 1 1

A100 vs. V100 Scalability Comparison

com-Friendster GAP-kron V100 A100

Fig. 10. LD-GPU scalability on the dense-GPU systems with annotated
#batches: DGX-2 (16 V100s) vs. the DGX-A100 (8 A100s).

C. GPU utilization

In this section, we demonstrate the challenges in maintain-
ing load balance throughout the progression of the matching
and pointing phases on device. The pointing phase deter-
mines the heaviest active neighbor edge for a vertex, while
the matching phase iterates over the remaining unmatched
vertices, “removing” edges from matching. Specifically, we
analyze the amount of edges processed on individual iterations
and relate it to the Streaming Multiprocessor (SM) occupancy
to assess the work efficiency on device.

Warp-Edge Work: The notion of warp-edge work in
LD-GPU can be expressed by the volume of consecutive edge

9

traversals during the pointing phase to determine the pointer
candidate per vertex neighborhood, on a per warp basis. We
consider the total number of edges traversed throughout the
matching progression across the iterations. Fig. 8 depicts
SMALL and LARGE inputs, capturing the mean and standard
deviation of percentages of the edge traversals across the
matching iterations, where each bar represents an iteration of
the respective input on LD-GPU.

Despite similar iteration counts across the inputs, we ob-
serve approximately 2–5× differences in the variance and
peak warp-edge work amounts. On average, a majority of the
edge traversals are performed in the first iteration of matching
(thus, the first iteration is the most expensive). Depending on
the graph structure and device partitions, we observe cases
such as the kmer U1a having a relatively high variance in
the distribution of warp-edge work on the second iteration.
Meanwhile, there are cases such as GAP-kron which exhibit
a relatively even distribution of warp-edge work throughout
the iterations. This variation is critical to GPU efficiency,
as an uneven distribution of edges across warps can signifiy
poor device utilization. For our purposes, however, the total
amount of work is reduced per iteration as pairings are added
to the matching. Thus, we capture the overall variations in the
densities of the warp-edge work in Fig. 8 and further study
the device occupancy, as discussed next.

0% 20% 40% 60% 80% 100%
Progression Percentage

30%

40%

50%

60%

70%

80%

90%

100%

S
M

 O
cc

up
an

cy

SM Occupancy Across Iterations

kmer_U1a
GAP-kron

mouse_gene
com-Friendster

mycielskian18

Fig. 11. GPU Streaming Multiprocessor (SM) occupancy (Y-axis, higher is
better) as reported through NVIDIA Nsight profiler per iteration of LD-GPU
(X-axis shows iteration progression in terms of %).

Streaming Multiprocessor (SM) Occupancy: Extending
the edge-work notion to GPU utilization, we examine the
SM occupancy on runs with different graph inputs. We track
SM occupancy per groups of the kernel launches, taking an
average (over batches) of the pointing and the matching phases
in an iteration. Fig. 11 depicts about 90% SM occupancy
through 100% of the program iterations for most cases, except
the outliers (mycielskian18 and mouse gene), which exhibit
diverging behavior and at the lowest point demonstrates 30%/
50% occupancy for the later half (50% mark) of the iterations.
Considering the pointing phase invokes repetitive neighbor-
hood scan, memory accesses are mostly contiguous, indicative

of relatively high SM occupancy, which is a favorable trait for
sustainable performance.

D. Performance Comparisons

To assess the results of our LD-GPU implementation, we
consider two state-of-the-art parallel weighted graph matching
implementations for comparison: the OpenMP Suitor algo-
rithm (SR-OMP) discussed in [30], [43] and the GPU Suitor
(SR-GPU) algorithm in [32], [33]. The Suitor algorithm is an
improvement over locally dominant matching algorithm, as
the former is able to reduce the number of candidate edges
for matching. We further include a sequential baseline in
Edmond’s Blossom algorithm implementation in the LEMON
matching collection in [28]. SR-OMP results are collected using
256 CPU threads while SR-GPU results are collected on a
single NVIDIA™ A100 GPU.

Execution time performance: We compare the results of
LD-GPU method to the SR-GPU and SR-OMP implementations
for the graphs listed in Table I. For LD-GPU, we consider
several device and batch counts to find the best performance.
While higher batch counts typically increase execution times
for LD-GPU given initial data loading and synchronization over-
heads, for large and massive graphs, we can leverage multiple
devices for improved partition distribution, outweighing these
costs. Table I lists the best execution times of LD-GPU, SR-GPU,
SR-OMP and LEMON, and the speedup of LD-GPU relative to
SR-GPU and SR-OMP implementations (it is unfair to compare
with LEMON since it is sequential).

Relative to SR-OMP, we observe performance improvements
of 2-45×, with a geometric mean of about 7×. In cases
such as the mycielskian18 graph, we obtain the highest
improvement with a single GPU, while other instances such
as the kmer U1a graph shows a better performance across
multiple devices. In practice, we notice that denser graphs
perform better when less devices are used, as performance
gains using multiple GPUs are often outweighed by the com-
munication overheads between partitions and above-average
iteration counts. Across the SMALL instances, we report a
geometric mean performance improvements of approximately
5×. Our LARGE instances demonstrate improvements w.r.t
SR-OMP of approximately 6× on average. For the largest (in
terms of #edges) three graphs in our dataset, we are required
to apply batching on our maximum GPU count of eight since
one or more partitions could not fit into the available device
memory. Among the LARGE inputs, AGATHA-2015, uk-2007-
05 and MOLIERE 2016, performed best on relatively larger
GPU counts using 2 batches. For uk-2007-05 and webbase-
2001, SR-OMP comparison is omitted since SR-OMP requires
graphs to be in Matrix Market native data format. GAP-kron
and GAP-urand exhibit significantly greater improvements
compared to other graphs, most likely due to their synthetic
nature and atypical degree distribution. We now discuss the
performance of SR-GPU (a single-GPU implementation), for
which LD-GPU shows competitive results on a variety of mid-
size graphs. We omit the comparison results for the majority
of the LARGE instances, as we experienced “out of memory”

10

issues with SR-GPU. On 4/7 SMALL instances, SR-GPU is
on average 2× faster than LD-GPU, since it optimizes for
computation on a single device. In contrary, our goals are to
consider larger graphs for efficient multi-device computation,
and we observe up to 1.47× speedup relative to SR-GPU using
over multiple batches and devices. Overall, SR-GPU shows
performance improvements relative to LD-GPU for multiple
midsize instances, but is unable to run on our LARGE in-
stances, excluding the com-Friendster graph (SR-GPU uses 32-
bit graph representation, while we have adopted 64-bit).

Single GPU performance comparison: We aim to 1)
leverage multiple GPUs, and 2) solve large-scale matchings;
consequently, in most cases, the best execution times obtained
use multiple GPUs. SR-GPU adopted load redistribution by
varying vertices-per-warp, which can only work in small
or regular degree graphs. So, for some graphs, LD-GPU is
relatively expensive on a single GPU, as shown in Table IV.
However, graphs are multifarious, and fixing vertices-per-warp
is not a general recipe for enhancing single GPU performance
(rather poses challenges for multi-GPU), as evident from
3/8 cases where LD-GPU is better or competitive, shown in
Table IV.

TABLE IV
SINGLE GPU RUNTIME COMPARISON

Runtime (s)

Graphs LD-GPU SR-GPU

com-Friendster 0.725 0.661
Queen 4147 0.027 0.008
mycielskian18 0.019 0.025
HV15R 0.045 0.047
com-Orkut 1.274 0.036
kmer U1a 0.193 0.048
kmer V2a 0.131 0.058
mouse gene 0.013 0.016

Comparisons with NVIDIA™ RAPIDS™ cuGraph:
Recently, NVIDIA RAPIDS cuGraph has released a weighted
approximate matching implementation (following [29], which
builds on locally dominant algorithm by Preis [36], see
§II-C) for distributed-memory multi-GPU systems. However,
current multi-GPU implementation of cuGraph (over modern
C++) is experimental, considering a process-per-GPU model,
requiring a process to load an entire graph (in a native
format such as matrix-market) and then filtering the subgraphs
for specific processes, increasing the overall memory usage.
For this reason, it is only practical to compare medium-
sized graphs with multi-GPU cuGraph (on reasonable #GPUs
to optimize the communication overheads). Also, due to
the software dependencies mandated by latest cuGraph, we
used different versions of the compilers and programming
systems compared to the baseline experiments. Specifically,
we used GCC/12.2.0, CUDA/12.1, OpenMPI/4.1.4 (CUDA-
aware) and miniconda/24.4.0, to build cuGraph using the
conda package manager2. We use the same software versions

2https://docs.rapids.ai/api/cugraph/nightly/installation/getting cugraph/
#conda

to build LD-GPU for appropriate comparison. Table V shows

TABLE V
CUGRAPH RUNTIME COMPARISON ON 4 GPUS

Runtime (s)

Graphs LD-GPU cuGraph

Queen 4147 0.018 7.978
mycielskian18 0.058 3.055
com-Orkut 1.218 32.385
kmer U1a 0.152 2.383
kmer V2a 0.202 2.579

the results (for maximal weighted matching, excluding graph
loading/processing which can be non-trivial) on 4 A100 GPUs,
relative to LD-GPU using a single batch. LD-GPU is an order
of magnitude faster than cuGraph; we anticipate this is due
to differences in the underlying communication abstractions.
Notably, cuGraph uses RAFT Comms (built on top of MPI)3,
while we use NCCL over CUDA streams.

Figure of Merit: Comparing parallel maximum weighted
matching methods on the basis of execution time only is
beset with challenges. Different implementations might adopt
various techniques and heuristics to optimize the performance/
quality targeting diverse architectures; unless a baseline met-
ric or Figure-of-Merit (FoM) is devised, comparing relative
performances under different parameter settings will remain
challenging.

For graph matching, a prospective FoM must consider the
total #iterations, matching quality, edges in matching and the
execution time performance. To that effect, we propose a
new FoM: “Mega-Matching Edges per Second” (MMEPS). In
essence, we correlate the rate at which edges are committed
to the matching, to the enhance the quality over the iterations.
We provide instances of comparison on variable size inputs in
Table VI. For each case for LD-GPU, we collect the best FoM
(higher is better) for invocations across devices and compare
to the best of the 10 runs of SR-OMP. Under this FoM, LD-GPU
demonstrates 2–20× improvements relative to SR-OMP.

TABLE VI
MEGA-MATCHING EDGES PER SECOND (HIGHER IS BETTER).

FoM (MMEPS)

Graphs LD-GPU SR-OMP

AGATHA-2015 8.14 3.77
MOLIERE-2016 1.28 0.31
GAP-urand 41.99 7.37
GAP-kron 29.63 1.21
com-Friendster 37.84 3.12
kmer U1a 191.35 39.99

V. CONCLUDING REMARKS

In this paper, we devise a parallel algorithm for locally dom-
inant maximal weighted graph matching for multiple GPUs on
single node NVIDIA DGX™ platforms. We leverage vendor-
optimized collective communication libraries for data transfer

3https://docs.rapids.ai/api/raft/nightly/cpp api/mnmg/

11

https://docs.rapids.ai/api/cugraph/nightly/installation/getting_cugraph/##conda
https://docs.rapids.ai/api/cugraph/nightly/installation/getting_cugraph/##conda
https://docs.rapids.ai/api/raft/nightly/cpp_api/mnmg/

between GPUs over NVLink interconnect, bypassing the host
CPU. We introduce batching to mitigate limited GPU memory,
increasing graph data sizes, and nontrivial graph partitioning
problems, the trio behind a myriad of out-of-memory issues.
Our batching method defines the working set size on GPUs,
providing a mechanism to balance independent work and syn-
chronization. Despite the irregularities in the graph structure
and the divergent computation patterns of locally dominant
matching (i.e., pointing and matching phases), we report 2–
45× performance improvements of our multi-GPU implemen-
tation relative to state-of-the-art OpenMP-based CPU (on 256
threads) for billion-edge graphs.

Towards the development of distributed matching schemes
targeting higher quality guarantees or similar improvements,
we conclude by highlighting the synchronization overheads
prevalent in parallel graph analytics. LD-GPU performs asyn-
chronous processing whenever possible, while adopting a
level-synchronous approach through explicit batch processing
for correctness. For more complex matching schemes, balanc-
ing the parallel efficiency, accuracy and synchronization costs
will be relevant in achieving sustainable strong scalability on
the next generation of HPC platforms.

ACKNOWLEDGMENTS

This research is in parts supported by the National Sci-
ence Foundation under Grant No. 2047821, the U.S. DOE
ExaGraph project; Data-Model Convergence Initiative (DMC)
and the LDRD initiative at the Pacific Northwest National
Laboratory (PNNL). PNNL is operated by Battelle Memorial
Institute under Contract DE-AC06-76RL01830. We would
also like to thank Dr. Tim Carlson at PNNL and the PNNL
Research Computing staff for their outstanding support.

REFERENCES

[1] Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. Network
flows: theory, algorithms, and applications. Prentice-Hall, Inc., USA,
1993.

[2] David Avis. A survey of heuristics for the weighted matching problem.
Networks, 13(4):475–493, 1983.

[3] Ariful Azad, Aydin Buluç, Xiaoye S Li, Xinliang Wang, and Johannes
Langguth. A distributed-memory algorithm for computing a heavy-
weight perfect matching on bipartite graphs. SIAM Journal on Scientific
Computing, 42(4):C143–C168, 2020.

[4] S. Belongie, J. Malik, and J. Puzicha. Shape matching and object
recognition using shape contexts. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 24(4):509–522, 2002.

[5] Massimo Bernaschi, Alessandro Celestini, Pasqua D’Ambra, and Flavio
Vella. Multi-GPU aggregation-based AMG preconditioner for iterative
linear solvers, 2023.

[6] Marcel Birn, Vitaly Osipov, Peter Sanders, Christian Schulz, and Nodari
Sitchinava. Efficient parallel and external matching. In European
Conference on Parallel Processing, pages 659–670. Springer, 2013.

[7] Paolo Boldi and Sebastiano Vigna. The WebGraph framework I:
Compression techniques. In Proc. of the Thirteenth International World
Wide Web Conference (WWW 2004), pages 595–601, Manhattan, USA,
2004. ACM Press.

[8] Rainer Burkard, Mauro Dell’Amico, and Silvano Martello. Assignment
Problems. Society for Industrial and Applied Mathematics, USA, 2009.

[9] Jie Chen, Robert G. Edwards, and Weizhen Mao. Graph contractions
for calculating correlation functions in lattice qcd. In Proceedings of
the Platform for Advanced Scientific Computing Conference, PASC ’23,
New York, NY, USA, 2023. Association for Computing Machinery.

[10] Han-Yi Chou and Sayan Ghosh. Batched graph community detection
on gpus. In Proceedings of the International Conference on Parallel
Architectures and Compilation Techniques, PACT ’22, page 172–184,
New York, NY, USA, 2023. Association for Computing Machinery.

[11] Pasqua D’Ambra, Fabio Durastante, S M Ferdous, Salvatore Filippone,
Mahantesh Halappanavar, and Alex Pothen. AMG preconditioners based
on parallel hybrid coarsening and multi-objective graph matching. In
2023 31st Euromicro International Conference on Parallel, Distributed
and Network-Based Processing (PDP), pages 59–67, 2023.

[12] Timothy A. Davis and Yifan Hu. The university of florida sparse matrix
collection. ACM Trans. Math. Softw., 38(1), dec 2011.

[13] Balázs Dezső, Alpár Jüttner, and Péter Kovács. LEMON–an open source
C++ graph template library. Electronic notes in theoretical computer
science, 264(5):23–45, 2011.

[14] Doratha E Drake and Stefan Hougardy. A simple approximation
algorithm for the weighted matching problem. Information Processing
Letters, 85(4):211–213, 2003.

[15] Ran Duan and Seth Pettie. Linear-time approximation for maximum
weight matching. Journal of the ACM (JACM), 61(1):1–23, 2014.

[16] I. S. Duff and J. Koster. On algorithms for permuting large entries to
the diagonal of a sparse matrix. SIAM Journal on Matrix Analysis and
Applications, 22(4):973–996, 2001.

[17] Jack Edmonds. Maximum matching and a polyhedron with 0, 1-vertices.
Journal of research of the National Bureau of Standards B, 69(125-
130):55–56, 1965.

[18] Jack Edmonds. Paths, trees, and flowers. Canadian Journal of
mathematics, 17:449–467, 1965.

[19] EETimes. Nvidia’s Blackwell Offers FP4, Second-Gen Transformer
Engine, 2024.

[20] Bas O Fagginger Auer and Rob H Bisseling. A GPU algorithm for
greedy graph matching. Facing the Multicore-Challenge II: Aspects of
New Paradigms and Technologies in Parallel Computing, pages 108–
119, 2012.

[21] Denis Foley and John Danskin. Ultra-performance pascal GPU and
NVLink interconnect. IEEE Micro, 37(2):7–17, 2017.

[22] Oded Green and David A Bader. cuSTINGER: Supporting dynamic
graph algorithms for gpus. In 2016 IEEE High Performance Extreme
Computing Conference (HPEC), pages 1–6. IEEE, 2016.

[23] Mahantesh Halappanavar, John Feo, Oreste Villa, Antonino Tumeo, and
Alex Pothen. Approximate weighted matching on emerging manycore
and multithreaded architectures. The International Journal of High
Performance Computing Applications, 26(4):413–430, 2012.

[24] Ismayil Ismayilov, Javid Baydamirli, Doğan Sağbili, Mohamed Wahib,
and Didem Unat. Multi-GPU communication schemes for iterative
solvers: When CPUs are not in charge. In Proceedings of the 37th
International Conference on Supercomputing, ICS ’23, page 192–202,
New York, NY, USA, 2023. Association for Computing Machinery.

[25] Sylvain Jeaugey. Nccl 2.0. In GPU Technology Conference (GTC),
volume 2, page 23, 2017.

[26] Jeremy Kepner and John Gilbert. Graph algorithms in the language of
linear algebra. SIAM, 2011.

[27] H. W. Kuhn. The hungarian method for the assignment problem. Naval
Research Logistics Quarterly, 2(1-2):83–97, 1955.

[28] LEMON Contributors. LEMON: Library for efficient modeling and
optimization in networks. https://lemon.cs.elte.hu/pub/doc/latest-svn/
index.html. Accessed: 2 April, 2024.

[29] Fredrik Manne and Rob H Bisseling. A parallel approximation algorithm
for the weighted maximum matching problem. In International Confer-
ence on Parallel Processing and Applied Mathematics, pages 708–717.
Springer, 2007.

[30] Fredrik Manne and Mahantesh Halappanavar. New effective multi-
threaded matching algorithms. In 2014 IEEE 28th International Parallel
and Distributed Processing Symposium, pages 519–528. IEEE, 2014.

[31] Briance Mascarenhas and Kartikeye Puranam. Analysis of the medical
residency matching algorithm to validate and improve equity. PLOS
ONE, 18(4):1–11, 04 2023.

[32] Md. Naim, Fredrik Manne, Mahantesh Halappanavar, Antonino Tumeo,
and Johannes Langguth. GPU suitor. https://hpc.pnl.gov/people/hala/
suitor.html. Accessed: 2 April, 2024.

[33] Md. Naim, Fredrik Manne, Mahantesh Halappanavar, Antonino Tumeo,
and Johannes Langguth. Optimizing approximate weighted matching on
Nvidia Kepler K40. 2015 IEEE 22nd International Conference on High
Performance Computing (HiPC), pages 105–114, 2015.

12

https://lemon.cs.elte.hu/pub/doc/latest-svn/index.html
https://lemon.cs.elte.hu/pub/doc/latest-svn/index.html
https://hpc.pnl.gov/people/hala/suitor.html
https://hpc.pnl.gov/people/hala/suitor.html

[34] Seth Pettie and Peter Sanders. A simpler linear time 2/3-ε approxima-
tion for maximum weight matching. Information Processing Letters,
91(6):271–276, 2004.

[35] Alex Pothen, SM Ferdous, and Fredrik Manne. Approximation algo-
rithms in combinatorial scientific computing. Acta Numerica, 28:541–
633, 2019.

[36] Robert Preis. Linear time 1/2-approximation algorithm for maximum
weighted matching in general graphs. In Annual Symposium on Theo-
retical Aspects of Computer Science, pages 259–269. Springer, 1999.

[37] Amir Hossein Nodehi Sabet, Zhijia Zhao, and Rajiv Gupta. Subway:
Minimizing data transfer during out-of-gpu-memory graph processing.
In Proceedings of the Fifteenth European Conference on Computer
Systems, pages 1–16, 2020.

[38] Dipanjan Sengupta, Shuaiwen Leon Song, Kapil Agarwal, and Karsten
Schwan. Graphreduce: processing large-scale graphs on accelerator-
based systems. In Proceedings of the International Conference for High
Performance Computing, Networking, Storage and Analysis, pages 1–12,
2015.

[39] Francesco Sgherzi, Alberto Parravicini, and Marco D. Santambrogio.
A mixed precision, Multi-GPU design for large-scale top-k sparse
eigenproblems. In 2022 IEEE International Symposium on Circuits and
Systems (ISCAS), pages 1259–1263, 2022.

[40] Xuanhua Shi, Zhigao Zheng, Yongluan Zhou, Hai Jin, Ligang He,
Bo Liu, and Qiang-Sheng Hua. Graph processing on GPUs: A survey.
ACM Computing Surveys (CSUR), 50(6):1–35, 2018.

[41] Kasia Świrydowicz, Eric Darve, Wesley Jones, Jonathan Maack, Shaked
Regev, Michael A Saunders, Stephen J Thomas, and Slaven Peleš.
Linear solvers for power grid optimization problems: a review of GPU-
accelerated linear solvers. Parallel Computing, 111:102870, 2022.

[42] Wenyong Zhong, Jianhua Sun, Hao Chen, Jun Xiao, Zhiwen Chen,
Chang Cheng, and Xuanhua Shi. Optimizing graph processing on GPUs.
IEEE Transactions on Parallel and Distributed Systems, 28(4):1149–
1162, 2016.

[43] Ümit V. Çatalyürek, Florin Dobrian, Assefaw Gebremedhin, Mahantesh
Halappanavar, and Alex Pothen. Distributed-memory parallel algorithms
for matching and coloring. In 2011 IEEE International Symposium on
Parallel and Distributed Processing Workshops and Phd Forum, pages
1971–1980, 2011.

13

	Introduction
	Background and Related Work
	Preliminaries
	Locally dominant algorithm
	Related Work

	GPU Implementation
	Graph distribution
	Batching
	Intermediate data sharing
	GPU Implementation

	Evaluations
	Matching Quality
	Baseline Performance
	GPU utilization
	Performance Comparisons

	Concluding Remarks
	References

